Library UniMath.SyntheticHomotopyTheory.AffineLine

Local Unset Kernel Term Sharing.

Construction of affine lines

We show that the propositional truncation of a ℤ-torsor, where ℤ is the additive group of the integers, behaves like an affine line. It's a contractible type, but maps from it to another type Y are determined by specifying where the points of T should go, and where the paths joining consecutive points of T should go.

Preliminaries


Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.MoreFoundations.NullHomotopies.
Require Import UniMath.MoreFoundations.Univalence.
Require Import UniMath.MoreFoundations.MoreEquivalences.
Require Import UniMath.MoreFoundations.Notations.
Require Import UniMath.MoreFoundations.PartA.
Require Import UniMath.MoreFoundations.Nat.
Require Import UniMath.Algebra.Monoids.
Require Import UniMath.Algebra.Groups.
Require Import UniMath.Algebra.GroupAction
               UniMath.NumberSystems.Integers.

Set Implicit Arguments.
Unset Strict Implicit.

Local Notation "g * x" := (ac_mult _ g x) : action_scope.
Local Open Scope hz_scope.
Local Open Scope transport.

Recursion for ℤ


Definition ℤRecursionData0 (P:->Type) (p0:P zero)
      (IH : n, P( toℤ n) -> P( toℤ (S n)))
      (IH': n, P(- toℤ n) -> P(- toℤ (S n))) := fun
          f: i, P i =>
            (f zero = p0) ×
            ( n, f( toℤ (S n)) = IH n (f ( toℤ n))) ×
            ( n, f(- toℤ (S n)) = IH' n (f (- toℤ n))).

Definition ℤRecursionData (P:->Type)
      (IH : n, P( toℤ n) -> P( toℤ (S n)))
      (IH': n, P(- toℤ n) -> P(- toℤ (S n))) := fun
             f: i, P i =>
               ( n, f( toℤ (S n)) = IH n (f ( toℤ n))) ×
               ( n, f(- toℤ (S n)) = IH' n (f (- toℤ n))).

Lemma ℤRecursionUniq (P:->Type) (p0:P zero)
      (IH : n, P( toℤ n) -> P( toℤ (S n)))
      (IH': n, P(- toℤ n) -> P(- toℤ (S n))) :
  iscontr (total2 (ℤRecursionData0 p0 IH IH')).
Show proof.
  intros.
  unfold ℤRecursionData0.
  apply (iscontrweqb (Y :=
                         f: w, P (negpos w),
                        (f (ii2 O) = p0) ×
                                         ( n : nat, f (ii2 (S n)) = IH n (f (ii2 n))) ×
                                         (f (ii1 O) = IH' O (f (ii2 O))) ×
                                         ( n : nat, f (ii1 (S n)) = IH' (S n) (f (ii1 n))))).
  { apply (weqbandf (weqonsecbase _ negpos)). intro f.
    simple refine (make_weq _ (isweq_iso _ _ _ _)).
    { intros [h0 [hp hn]]. simple refine (_,,_,,_,,_).
      { exact h0. } { exact hp. }
                    { exact (hn O). } { intro n. exact (hn (S n)). } }
    { intros [h0 [hp [h1' hn]]]. simple refine (_,,_,,_).
      { exact h0. } { exact hp. }
                    { intros [|n']. { exact h1'. } { exact (hn n'). } } }
    { intros [h0 [hp hn]]. simpl. apply paths3.
      { reflexivity. } { reflexivity. }
                       { apply funextsec; intros [|n']; reflexivity; reflexivity. } }
    { intros [h0 [h1' [hp hn]]]. reflexivity. } }
  intermediate_iscontr (
     f : ( n, P (negpos (ii1 n))) ×
                                    ( n, P (negpos (ii2 n))),
          (pr2 f O = p0) ×
                         ( n : nat, pr2 f (S n) = IH n (pr2 f n)) ×
                         (pr1 f O = IH' O (pr2 f O)) ×
                         ( n : nat, pr1 f (S n) = IH' (S n) (pr1 f n))).
  { apply (weqbandf (weqsecovercoprodtoprod (λ w, P (negpos w)))).
    intro f. apply idweq. }
  intermediate_iscontr (
     f : ( n, P (negpos (ii2 n))) ×
                                    ( n, P (negpos (ii1 n))),
          (pr1 f O = p0) ×
                         ( n : nat, pr1 f (S n) = IH n (pr1 f n)) ×
                         (pr2 f O = IH' O (pr1 f O)) ×
                         ( n : nat, pr2 f (S n) = IH' (S n) (pr2 f n))).
  { apply (weqbandf (weqdirprodcomm _ _)). intro f. apply idweq. }
  intermediate_iscontr (
     (f2 : n : nat, P (negpos (ii2 n)))
      (f1 : n : nat, P (negpos (ii1 n))),
    (f2 O = p0) ×
                ( n : nat, f2 (S n) = IH n (f2 n)) ×
                (f1 O = IH' O (f2 O)) ×
                ( n : nat, f1 (S n) = IH' (S n) (f1 n))).
  { apply weqtotal2asstor. }
  intermediate_iscontr (
     f2 : n : nat, P (negpos (ii2 n)),
                 (f2 O = p0) ×
                              f1 : n : nat, P (negpos (ii1 n)),
                                          ( n : nat, f2 (S n) = IH n (f2 n)) ×
                                                                              (f1 O = IH' O (f2 O)) ×
                                                                              ( n : nat, f1 (S n) = IH' (S n) (f1 n))).
  { apply weqfibtototal; intro f2. apply weq_total2_prod. }
  intermediate_iscontr (
     f2 : n : nat, P (negpos (ii2 n)),
                 (f2 O = p0) ×
                             ( n : nat, f2 (S n) = IH n (f2 n)) ×
                              f1 : n : nat, P (negpos (ii1 n)),
                                          (f1 O = IH' O (f2 O)) ×
                                                                ( n : nat, f1 (S n) = IH' (S n) (f1 n))).
  { apply weqfibtototal; intro f2. apply weqfibtototal; intro.
    apply weq_total2_prod. }
  intermediate_iscontr (
     f2 : n : nat, P (negpos (ii2 n)),
                 (f2 O = p0) ×
                             ( n : nat, f2 (S n) = IH n (f2 n))).
  { apply weqfibtototal; intro f2. apply weqfibtototal; intro h0.
    apply weqpr1; intro ih2.
    exact (hNatRecursionUniq
             (λ n, P (negpos (ii1 n)))
             (IH' O (f2 O))
             (λ n, IH' (S n))). }
  apply hNatRecursionUniq.

Lemma A (P:->Type) (p0:P zero)
      (IH : n, P( toℤ n) -> P( toℤ (S n)))
      (IH': n, P(- toℤ n) -> P(- toℤ (S n))) :
  weq (total2 (ℤRecursionData0 p0 IH IH'))
      (@hfiber
         (total2 (ℤRecursionData IH IH'))
         (P zero)
         (λ fh, pr1 fh zero)
         p0).
Show proof.
  intros.
  simple refine (make_weq _ (isweq_iso _ _ _ _)).
  { intros [f [h0 h]]. exact ((f,,h),,h0). }
  { intros [[f h] h0]. exact (f,,(h0,,h)). }
  { intros [f [h0 h]]. reflexivity. }
  { intros [[f h] h0]. reflexivity. }

Lemma ℤRecursion_weq (P:->Type)
      (IH : n, P( toℤ n) -> P( toℤ (S n)))
      (IH': n, P(- toℤ n) -> P(- toℤ (S n))) :
  weq (total2 (ℤRecursionData IH IH')) (P 0).
Show proof.
  intros. exists (λ f, pr1 f zero). intro p0.
  apply (iscontrweqf (A _ _ _)). apply ℤRecursionUniq.

Lemma ℤRecursion_weq_compute (P:->Type)
      (IH : n, P( toℤ n) -> P( toℤ (S n)))
      (IH': n, P(- toℤ n) -> P(- toℤ (S n)))
      (fh : total2 (ℤRecursionData IH IH')) :
  ℤRecursion_weq IH IH' fh = pr1 fh zero.
Show proof.
  reflexivity.

Bidirectional recursion for ℤ


Definition ℤBiRecursionData (P:->Type) (IH : i, P(i) -> P(1+i)) :=
  fun f: i, P i => i, f(1+i)=IH i (f i).

Definition ℤBiRecursion_weq (P:->Type) (IH : i, weq (P i) (P(1+i))) :
  weq (total2 (ℤBiRecursionData IH)) (P 0).
Show proof.
  intros.
  assert (k : n, one + toℤ n = toℤ (S n)).
  { intro. rewrite nattohzandS. reflexivity. }
  set (l := λ n : nat, weq_transportf P (k n)).
  assert (k' : n, - toℤ n = one + (- toℤ (S n))).
  { intros. unfold one, toℤ. rewrite nattohzand1.
    rewrite nattohzandS. rewrite hzminusplus. rewrite <- (hzplusassoc one).
    rewrite (hzpluscomm one). rewrite hzlminus. rewrite hzplusl0.
    reflexivity. }
  set (l' := λ n, weq_transportf P (k' n)).
  set (ih := λ n, weqcomp (IH (toℤ n)) (l n)).
  set (ih':= λ n, (weqcomp (l' n) (invweq (IH (- toℤ (S n)))))).
  set (G := ℤRecursion_weq ih ih'). simple refine (weqcomp _ G).
  apply weqfibtototal. intro f. unfold ℤRecursionData, ℤBiRecursionData.
  simple refine (weqcomp (weqonsecbase _ negpos) _).
  simple refine (weqcomp (weqsecovercoprodtoprod _) _).
  simple refine (weqcomp (weqdirprodcomm _ _) _). apply weqdirprodf.
  { apply weqonsecfibers; intro n. simple refine (weqonpaths2 _ _ _).
    { change (negpos (ii2 n)) with (toℤ n). exact (l n). }
    { unfold l. apply weq_transportf_comp. }
    { reflexivity. } }
  { apply weqonsecfibers; intro n. simpl.
    simple refine (weqcomp (make_weq _ (isweqpathsinv0 _ _)) _).
    simple refine (weqonpaths2 _ _ _).
    { apply invweq. apply IH. }
    { simpl. rewrite homotinvweqweq. reflexivity. }
    { simpl. change (natnattohz 0 (S n)) with (- toℤ (S n)).
      unfold l'. rewrite weq_transportf_comp.
      reflexivity. } }

Definition ℤBiRecursion_compute (P:->Type)
           (IH : i, weq (P i) (P(1+i)))
      (fh : total2 (ℤBiRecursionData IH)) :
  ℤBiRecursion_weq IH fh = pr1 fh 0.
Show proof.
  reflexivity.

Definition ℤBiRecursion_inv_compute (P : Type) (f : z : , P z P (1 + z)) (p : P 0) :
  pr1 (invmap (ℤBiRecursion_weq f) p) 0 = p
  :=
    ! ℤBiRecursion_compute (invmap (ℤBiRecursion_weq f) p)
      @
      homotweqinvweq (ℤBiRecursion_weq f) p.

Definition ℤBiRecursion_transition_inv (P : Type) (f : z : , P z P (1 + z)) (p : P 0) (z : ) :
  pr1 (invmap (ℤBiRecursion_weq f) p) (1 + z)
  =
  f z (pr1 (invmap (ℤBiRecursion_weq f) p) z)
  :=
    pr2 (invmap (ℤBiRecursion_weq f) p) z.

Definition ℤBiRecursion_transition_inv_reversed (P : Type) (f : z : , P z P (1 + z)) (p : P 0) (z : ) :
  pr1 (invmap (ℤBiRecursion_weq f) p) z
  =
  invmap (f z) (pr1 (invmap (ℤBiRecursion_weq f) p) (1 + z))
  :=
    !homotinvweqweq _ _ @
     maponpaths (invmap (f z)) (! ℤBiRecursion_transition_inv f p z).

Notation "n + x" := (ac_mult _ n x) : action_scope.
Notation "n - m" := (quotient _ n m) : action_scope.
Local Open Scope action_scope.

Bidirectional recursion for ℤ-torsors


Definition GuidedSection {T:Torsor }
           (P:T->Type) (IH: t, weq (P t) (P (one + t))) := fun
     f: t, P t =>
        t, f (one + t) = IH t (f t).

Definition ℤTorsorRecursion_weq {T:Torsor } (P:T->Type)
      (IH: t, weq (P t) (P (one + t))) (t0:T) :
  weq (total2 (GuidedSection IH)) (P t0).
Show proof.
  intros. exists (λ fh, pr1 fh t0). intro q.
  set (w := triviality_isomorphism T t0).
  assert (k0 : i, one + w i = w (1+i)%hz).
  { intros. simpl. unfold right_mult, ac_mult. unfold act_mult. rewrite act_assoc.
    reflexivity. }
  set (l0 := (λ i, eqweqmap (maponpaths P (k0 i)))
             : i, weq (P(one + w i)) (P(w(1+i)%hz))).
  assert( e : right_mult t0 zero = t0 ). { apply act_unit. }
                                         set (H := λ f, t : T, f (one + t) = (IH t) (f t)).
  set ( IH' := (λ i, weqcomp (IH (w i)) (l0 i))
               : i:, weq (P (w i)) (P (w(1+i)%hz))).
  set (J := λ f, i : , f (1 + i)%hz = (IH' i) (f i)).
  simple refine (iscontrweqb (@weq_over_sections T w 0 t0 e P q (e#'q) _ H J _) _).
  { apply transportfbinv. }
  { intro. apply invweq. unfold H,J,maponsec1. simple refine (weqonsec _ _ w _).
    intro i. simple refine (weqonpaths2 _ _ _).
    { exact (invweq (l0 i)). }
    { unfold l0. apply eqweqmap_ap'. }
    { unfold IH'. unfold weqcomp; simpl.
      rewrite (homotinvweqweq (l0 i)). reflexivity. } }
  exact (pr2 (ℤBiRecursion_weq IH') (e #' q)).

Definition ℤTorsorRecursion_compute {T:Torsor } (P:T->Type)
      (IH: t, weq (P t) (P (one + t))) t h :
  ℤTorsorRecursion_weq IH t h = pr1 h t.
Show proof.
  reflexivity.

Definition ℤTorsorRecursion_inv_compute {T:Torsor } (P:T->Type)
      (IH: t, weq (P t) (P (one + t)))
      (t0:T) (h0:P t0) :
  pr1 (invmap (ℤTorsorRecursion_weq IH t0) h0) t0 = h0.
Show proof.
  intros.
  exact (! ℤTorsorRecursion_compute t0
           (invmap (ℤTorsorRecursion_weq IH t0) h0)
           @
           homotweqinvweq (ℤTorsorRecursion_weq IH t0) h0).

Definition ℤTorsorRecursion_transition {T:Torsor } (P:T->Type)
      (IH: t, weq (P t) (P (one + t)))
      (t:T)
      (h:total2 (GuidedSection IH)) :
  ℤTorsorRecursion_weq IH (one+t) h
  =
  IH t (ℤTorsorRecursion_weq IH t h).
Show proof.
  intros. rewrite 2!ℤTorsorRecursion_compute. exact (pr2 h t).

Definition ℤTorsorRecursion_transition_inv {T:Torsor } (P:T->Type)
      (IH: t, weq (P t) (P (one + t)))
      (t:T) :
   h0,
  invmap (ℤTorsorRecursion_weq IH t) h0
  =
  invmap (ℤTorsorRecursion_weq IH (one+t)) (IH t h0).
Show proof.
  intros.
  assert (a := ℤTorsorRecursion_transition t (invmap (ℤTorsorRecursion_weq IH t) h0)).
  rewrite homotweqinvweq in a. rewrite <- a.
  rewrite homotinvweqweq. reflexivity.

Definition ℤTorsorRecursion {T:Torsor } (P:T->Type)
      (IH: t, weq (P t) (P (one + t)))
      (t t':T) :
  (P t) (P t').
Show proof.
  intros.
  exact (weqcomp (invweq (ℤTorsorRecursion_weq IH t))
                 (ℤTorsorRecursion_weq IH t')).

Guided null-homotopies from ℤ-torsors

Let f be a map from a ℤ-torsor T to a type Y, and let s be a collection of target paths, connecting the images under f of consecutive points of T.
A null-homotopy for f is a point y of Y, together with paths from y to each point in the image of f. We say that it is "guided" by s if all the consecutive triangles commute.
The main fact is that the type of guided null-homotopies for f is contractible.

Definition target_paths {Y} {T:Torsor } (f:T->Y) := t, f t=f(one + t).

Definition GHomotopy {Y} {T:Torsor } (f:T->Y) (s:target_paths f) := fun
        y:Y => h:nullHomotopyFrom f y, n, h(one + n) = h n @ s n.

Definition GuidedHomotopy {Y} {T:Torsor } (f:T->Y) (s:target_paths f) :=
  total2 (GHomotopy s).

Definition GH_to_cone {Y} {T:Torsor }
           {f:T->Y} {s:target_paths f} (t:T) :
  GuidedHomotopy s -> coconustot Y (f t).
Show proof.
  intros [y hp]. exact (y,,pr1 hp t).

Definition GH_point {Y} {T:Torsor } {f:T->Y} {s:target_paths f}
           (yhp : GuidedHomotopy s) := pr1 yhp : Y.

Definition GH_homotopy {Y} {T:Torsor } {f:T->Y} {s:target_paths f}
           (yhp : GuidedHomotopy s)
     := pr1 (pr2 yhp)
     : nullHomotopyFrom f (GH_point yhp).

Definition GH_equations {Y} {T:Torsor } (f:T->Y) (s:target_paths f)
           (yhp : GuidedHomotopy s)
     := pr2 (pr2 yhp)
     : let h := GH_homotopy yhp in
        n, h(one + n) = h n @ s n.

Theorem iscontrGuidedHomotopy {Y} (T:Torsor ) (f:T->Y) (s:target_paths f) :
  iscontr (GuidedHomotopy s).
Show proof.
  intros. apply (squash_to_prop (torsor_nonempty T)).
  { apply isapropiscontr. } intro t0.
  apply ( iscontrweqb (Y := y:Y, y = f t0)).
  { apply weqfibtototal; intro y.
    exact (ℤTorsorRecursion_weq (λ t, weq_pathscomp0r _ _) t0). }
  apply iscontrcoconustot.

Corollary proofirrGuidedHomotopy {Y} (T:Torsor ) (f:T->Y) (s:target_paths f) :
   v w : GuidedHomotopy s, v=w.
Show proof.
  intros. apply proofirrelevancecontr. apply iscontrGuidedHomotopy.

Definition iscontrGuidedHomotopy_comp_1 {Y} :
  let T := trivialTorsor in
  let t0 := 0 : T in
     (f:T->Y) (s:target_paths f),
      GH_point (iscontrpr1 (iscontrGuidedHomotopy s)) = f t0.
Show proof.
  reflexivity.

Definition iscontrGuidedHomotopy_comp_2 {Y} :
  let T := trivialTorsor in
  let t0 := 0 : T in
     (f:T->Y) (s:target_paths f),
        (GH_homotopy (iscontrpr1 (iscontrGuidedHomotopy s)) t0) =
        (idpath (f t0)).
Show proof.
  intros.
  assert (a2 := fiber_paths (iscontrweqb_compute
                               (weqfibtototal (GHomotopy s) (λ y : Y, y = f t0)
                                              (λ y : Y,
                                                     ℤTorsorRecursion_weq
                                                                          (λ t : T, weq_pathscomp0r y (s t)) t0))
                               (iscontrcoconustot Y (f t0)))
                : @paths (GHomotopy s (f t0)) _ _).
  assert (Q1 := eqtohomot (maponpaths pr1 ((idpath _ :
                                              (pr2
                                                 (iscontrpr1
                                                    (iscontrweqb
                                                       (weqfibtototal (GHomotopy s) (λ y : Y, y = f t0)
                                                                      (λ y : Y,
                                                                             ℤTorsorRecursion_weq (λ t : T, weq_pathscomp0r y (s t)) t0))
                                                       (iscontrcoconustot Y (f t0)))))
                                              =
                                              (path_start a2)) @ a2)) t0).
  assert (Q2 := eqtohomot
                  (maponpaths pr1
                              (compute_pr2_invmap_weqfibtototal
                                 (λ y : Y,
                                        ℤTorsorRecursion_weq
                                          (λ t : T, weq_pathscomp0r y (s t)) t0)
                                 (f t0,, idpath (f t0))))
                  t0).
  assert (Q3 := ℤTorsorRecursion_inv_compute
                  (λ t : T,
                         weq_pathscomp0r
                           (pr1
                              (invmap
                                 (weqfibtototal (λ y : Y, y0, GuidedSection (λ t1 : T, weq_pathscomp0r y (s t1)) y0)
                                                (λ y : Y, (λ t1 : T, y = f t1) t0) (λ y : Y, ℤTorsorRecursion_weq (λ t1 : T, weq_pathscomp0r y (s t1)) t0))
                                 (f t0,, idpath (f t0)))) (s t)) (pr2 (f t0,, idpath (f t0)))).
Abort.



Definition makeGuidedHomotopy {T:Torsor } {Y} (f:T->Y)
           (s:target_paths f) {y:Y} t0 (h0:y=f t0) :
  GuidedHomotopy s.
Proof.
  intros. exact (y ,, invweq (ℤTorsorRecursion_weq
                                (λ t, weq_pathscomp0r y (s t))
                                t0) h0).

Definition makeGuidedHomotopy1 {T:Torsor } {Y} (f:T->Y)
           (s:target_paths f) (t0:T) : GuidedHomotopy s.
Show proof.
  intros. exact (makeGuidedHomotopy s (idpath (f t0))).

Definition makeGuidedHomotopy_localPath {T:Torsor } {Y} (f:T->Y)
           (s:target_paths f) {y:Y} t0 (h0 h0':y=f t0) (q:h0=h0') :
  makeGuidedHomotopy s h0 = makeGuidedHomotopy s h0'.
Show proof.
  intros. destruct q. reflexivity.

Definition makeGuidedHomotopy_localPath_comp {T:Torsor } {Y} (f:T->Y)
           (s:target_paths f) {y:Y} t0 (h0 h0':y=f t0) (q:h0=h0') :
  maponpaths pr1 (makeGuidedHomotopy_localPath s q) = idpath y.
Show proof.
  intros. destruct q. reflexivity.

Definition makeGuidedHomotopy_verticalPath {T:Torsor } {Y} (f:T->Y)
           (s:target_paths f) {y:Y} t0 (h0:y=f t0)
           {y':Y} (p:y' = y) :
  makeGuidedHomotopy s (p@h0) = makeGuidedHomotopy s h0.
Show proof.
  intros. apply (two_arg_paths_f p). destruct p. reflexivity.

Definition makeGuidedHomotopy_verticalPath_comp {T:Torsor } {Y} (f:T->Y)
           (s:target_paths f) {y:Y} t0 (h0:y=f t0)
           {y':Y} (p:y' = y) :
  maponpaths pr1 (makeGuidedHomotopy_verticalPath s h0 p) = p.
Show proof.
  intros. apply total2_paths2_comp1.

Definition makeGuidedHomotopy_transPath {T:Torsor } {Y} (f:T->Y)
           (s:target_paths f) {y:Y} t0 (h0:y=f t0) :
  makeGuidedHomotopy s h0 = makeGuidedHomotopy s (h0 @ s t0).
Show proof.
  intros. apply (maponpaths (tpair _ _)).
  exact (ℤTorsorRecursion_transition_inv (λ t, weq_pathscomp0r y (s t)) _).

Definition makeGuidedHomotopy_transPath_comp {T:Torsor } {Y} (f:T->Y)
           (s:target_paths f) {y:Y} t0 (h0:y=f t0) :
  maponpaths pr1 (makeGuidedHomotopy_transPath s h0) = idpath y.
Show proof.
  intros.
  unfold makeGuidedHomotopy_transPath.
  exact (pair_path_in2_comp1
           _ (ℤTorsorRecursion_transition_inv (λ t, weq_pathscomp0r y (s t)) _)).

Definition makeGuidedHomotopy_diagonalPath {T:Torsor } {Y} (f:T->Y)
           (s:target_paths f) (t0:T) :
  makeGuidedHomotopy1 s t0 = makeGuidedHomotopy1 s (one + t0).
Show proof.
  intros.
  assert (b := makeGuidedHomotopy_transPath s (idpath(f t0))); simpl in b.
  assert (c := makeGuidedHomotopy_localPath s (! pathscomp0rid (s t0))).
  assert (a := makeGuidedHomotopy_verticalPath s (idpath(f(one + t0))) (s t0)) .
  exact (b @ c @ a).

Definition makeGuidedHomotopy_diagonalPath_comp {T:Torsor } {Y} (f:T->Y)
           (s:target_paths f) (t0:T) :
  maponpaths pr1 (makeGuidedHomotopy_diagonalPath s t0) = s t0.
Show proof.

Definition map {T:Torsor } {Y} (f:T->Y) (s:target_paths f) :
   T -> GuidedHomotopy s.
Show proof.
  intros t'.
  apply (squash_to_prop t').
  { apply isapropifcontr. apply iscontrGuidedHomotopy. }
  intro t; clear t'.
  exact (makeGuidedHomotopy1 s t).

Definition map_path {T:Torsor } {Y} (f:T->Y) (s:target_paths f) :
   t, map s (squash_element t) = map s (squash_element (one + t)).
Show proof.
  intros. exact (makeGuidedHomotopy_diagonalPath s t).

Definition map_path_check {T:Torsor } {Y} (f:T->Y) (s:target_paths f) :
   t, p : map s (squash_element t) =
                       map s (squash_element (one + t)),
    maponpaths pr1 p = s t.
Show proof.
  intros. set (q := map_path s t). assert (k : q=p).
  { apply (hlevelntosn 1). apply (hlevelntosn 0).
    apply iscontrGuidedHomotopy. }
  destruct k. exact (makeGuidedHomotopy_diagonalPath_comp s t).

From each torsor we get a guided homotopy


Definition makeGuidedHomotopy2 (T:Torsor ) {Y} (f:T->Y) (s:target_paths f) :
  GuidedHomotopy s.
Show proof.
  intros. exact (map s (torsor_nonempty T)).

The construction of the affine line


Definition affine_line (T:Torsor ) := T .

Definition affine_line_point (T:Torsor ) : affine_line T.
Show proof.
  intros. exact (torsor_nonempty T).

Lemma iscontr_affine_line (T:Torsor ) : iscontr (affine_line T).
Show proof.
  intros. apply iscontraprop1.
  { apply propproperty. }
  exact (torsor_nonempty T).

Lemma affine_line_path {T:Torsor } (t u:affine_line T) : t = u.
Show proof.

Definition affine_line_map {T:Torsor } {Y} (f:T->Y) (s:target_paths f) :
  affine_line T -> Y.
Show proof.
  intros t'. exact (pr1 (map s t')).

Definition check_values {T:Torsor } {Y} (f:T->Y) (s:target_paths f) t :
  affine_line_map s (squash_element t) = f t.
Show proof.
  reflexivity.

Definition check_paths {T:Torsor } {Y} (f:T->Y) (s:target_paths f) (t:T) :
  maponpaths (affine_line_map s) (squash_path t (one + t)) = s t.
Show proof.
  intros.
  refine (_ @ map_path_check (maponpaths (map s) (squash_path t (one + t)))).
  apply pathsinv0. apply maponpathscomp.

Definition check_paths_any {T:Torsor } {Y} (f:T->Y) (s:target_paths f) (t:T)
           (p : squash_element t = squash_element (one + t)) :
  maponpaths (affine_line_map s) p = s t.
Show proof.
  intros. set (p' := squash_path t (one + t)).
  assert (e : p' = p). { apply (hlevelntosn 1). apply propproperty. }
                       destruct e. apply check_paths.

Definition add_one {T:Torsor } : affine_line T -> affine_line T.
Show proof.
  exact (squash_fun (λ t, one + t)).

The image of the mere point in an affine line

A torsor is nonempty, so it merely has a point, as does the corresponding affine line. Here we name its image in Y.

Definition affine_line_value {T:Torsor } {Y} (f:T->Y) (s:target_paths f) : Y.
Show proof.
  exact (affine_line_map s (affine_line_point (T:=T))).