Library UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems_Summary


Interface file to the package SubstitutionSystems
The purpose of this file is to provide a stable interface to the formalization of heterogeneous substitution systems as defined by Matthes and Uustalu
version for simplified notion of HSS by Ralph Matthes (2022, 2023) the file is very close to the homonymous file in the parent directory basically, the changes in SimplifiedHSS.SubstitutionSystems are propagated
WARNING: the last part of the previous development is commented out since SimplifiedHSS.Lam is an incomplete adaptation

Require Import UniMath.Foundations.PartD.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.Limits.BinProducts.
Require Import UniMath.CategoryTheory.Limits.BinCoproducts.
Require Import UniMath.CategoryTheory.Limits.Initial.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.FunctorAlgebras.
Require Import UniMath.CategoryTheory.opp_precat.
Require Import UniMath.CategoryTheory.yoneda.
Require Import UniMath.CategoryTheory.PointedFunctors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.HorizontalComposition.
Require Import UniMath.CategoryTheory.PointedFunctorsComposition.
Require Import UniMath.SubstitutionSystems.Signatures.
Require Import UniMath.SubstitutionSystems.BinSumOfSignatures.
Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems.
Require Import UniMath.SubstitutionSystems.GenMendlerIteration.
Require Import UniMath.CategoryTheory.RightKanExtension.
Require Import UniMath.SubstitutionSystems.GenMendlerIteration.
Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial.
Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems.
Require Import UniMath.SubstitutionSystems.LamSignature.
Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam.
Require Import UniMath.SubstitutionSystems.Notation.
Local Open Scope subsys.

Notation "⦃ f ⦄_{ Z }" := (fbracket _ Z f)(at level 0).
Notation "G • F" := (functor_composite F G).

Generalized Iteration in Mendler-style and fusion law

Lemma 8

Definition GenMendlerIteration :
    (C : category) (F : functor C C)
   (μF_Initial : Initial (FunctorAlg F)) (C' : category)
   (X : C') (L : functor C C'),
   is_left_adjoint L
    ψ : ψ_source C C' X L ψ_target C F C' X L,
     ∃! h : C' L ` (InitialObject μF_Initial), X ,
     # L (alg_map F (InitialObject μF_Initial)) · h =
     ψ ` (InitialObject μF_Initial) h.
Show proof.
  simpl.
  apply GenMendlerIteration.

Arguments It {_ _} _ {_} _ _ _ _.

Lemma 9

Theorem fusion_law
     : (C : category)
       (F : functor C C)
       (μF_Initial : Initial (category_FunctorAlg F))
       (C' : category)
       (X X' : C') (L : functor C C')
       (is_left_adj_L : is_left_adjoint L)
       (ψ : ψ_source C C' X L ψ_target C F C' X L)
       (L' : functor C C')
       (is_left_adj_L' : is_left_adjoint L')
       (ψ' : ψ_source C C' X' L' ψ_target C F C' X' L')
       (Φ : yoneda_objects C' X functor_opp L
              
            yoneda_objects C' X' functor_opp L'),
       let T:= (` (InitialObject μF_Initial)) in
       ψ T · Φ (F T) = Φ T · ψ' T
       
       Φ T (It μF_Initial X L is_left_adj_L ψ) =
       It μF_Initial X' L' is_left_adj_L' ψ'.
Show proof.
  apply fusion_law.

Heterogeneous Substitution Systems

Lemma 15

Lemma fbracket_natural
     : (C : category) (CP : BinCoproducts C)
       (H : Presignature C C C) (T : hss CP H) (Z Z' : category_Ptd C)
       (f : category_Ptd C Z, Z' )
       (g : [C,C] U Z', `T ),
       (`T # U f : [C, C] `T U Z , `T U Z' ) · g_{Z'} = #U f · g_{Z} .
Show proof.
  apply fbracket_natural.

Lemma compute_fbracket
     : (C : category) (CP : BinCoproducts C)
       (H : Presignature C C C) (T : hss CP H) (Z : category_Ptd C)
       (f : category_Ptd C Z, ptd_from_alg T ),
       #U f_{Z} = (`T # U f : [C, C] `T U Z , `T U _ ) · identity (U (ptd_from_alg T)) _{ptd_from_alg T}.
Show proof.
  apply compute_fbracket.

Monads from hss

Theorem 24

Definition Monad_from_hss
     : (C : category) (CP : BinCoproducts C)
       (H : Signature C C C), hss CP H Monad C.
Show proof.
  apply Monad_from_hss.

Theorem 25

Definition hss_to_monad_functor
     : (C : category) (CP : BinCoproducts C)
       (H : Signature C C C),
       functor (hss_precategory CP H) (category_Monad C).
Show proof.

Lemma 26

Lifting initiality

Theorem 28 in three steps:
  • the operation itself
  • its compatibility with variables
  • its compatibility with signature-dependent constructions

Definition bracket_for_initial_algebra
 : (C : category) (CP : BinCoproducts C),
     ( Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C)
        (H : Presignature C C C)
           (IA : Initial (FunctorAlg (Id_H C CP H)))
           (Z : category_Ptd C),
           [C, C] U Z, U (ptd_from_alg (InitAlg C CP H IA))
           
           [C, C] (U Z) ` (InitialObject IA), ` (InitAlg C CP H IA) .
Show proof.
  apply bracket_Thm15.

Lemma bracket_Thm15_ok_η
     : (C : category) (CP : BinCoproducts C)
       (KanExt : Z : category_Ptd C,
                 GlobalRightKanExtensionExists C C (U Z) C)
       (H : Presignature C C C)
       (IA : Initial (FunctorAlg (Id_H C CP H)))
       (Z : category_Ptd C)
       (f : [C,C] U Z, U (ptd_from_alg (InitAlg C CP H IA))),
       f =
       # (pr1 ( (U Z))) (η (InitAlg C CP H IA)) ·
       bracket_Thm15 C CP KanExt H IA Z f.
Show proof.

Lemma bracket_Thm15_ok_τ
  : (C : category) (CP : BinCoproducts C)
      (KanExt : Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C)
      (H : Presignature C C C)
      (IA : Initial (FunctorAlg (Id_H C CP H)))
      (Z : category_Ptd C)
      (f : [C,C] U Z, U (ptd_from_alg (InitAlg C CP H IA)) ),
    (theta H) (` (InitAlg C CP H IA) Z) ·
    # H (bracket_Thm15 C CP KanExt H IA Z f) ·
    τ (InitAlg C CP H IA)
    =
    # (pr1 ( (U Z))) (InitAlg C CP H IA)) ·
      bracket_Thm15 C CP KanExt H IA Z f.
Show proof.

Theorem 29

Definition Initial_HSS :
    (C : category) (CP : BinCoproducts C),
     ( Z : category_Ptd C,
         GlobalRightKanExtensionExists C C (U Z) C)
      H : Presignature C C C,
       Initial (FunctorAlg (Id_H C CP H))
        Initial (hss_category CP H).
Show proof.
  apply InitialHSS.

Sum of signatures

Lemma 30

Arities of signatures for lambda calculus

Definition 31

Definition App_Sig
  : (C : category), BinProducts C Signature C C C.
Show proof.
  apply App_Sig.

Definition 32
Definition 33

Definition Flat_Sig
  : (C : category), Signature C C C.
Show proof.
  apply Flat_Sig.

Evaluation of explicit substitution as initial morphism

this part not compatible with current modifications to the notion of hss
Definition Lam_Flatten : ∏ (C : category) (terminal : Terminal C) (CC : BinCoproducts C) (CP : BinProducts C), (∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) → ∏ Lam_Initial : Initial (FunctorAlg (Id_H C CC (Lam_Sig C terminal CC CP))), C, C ⟦ (Flat_H C) ` (InitialObject Lam_Initial), ` (InitialObject Lam_Initial) ⟧. Proof. apply Lam_Flatten. Defined.
Definition fbracket_for_LamE_algebra_on_Lam : ∏ (C : category) (terminal : Terminal C) (CC : BinCoproducts C) (CP : BinProducts C) (KanExt : ∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) (Lam_Initial : Initial (FunctorAlg (Id_H C CC (Lam_Sig C terminal CC CP)))) (Z : category_Ptd C), category_Ptd C ⟦ Z , (ptd_from_alg_functor CC (LamE_Sig C terminal CC CP)) (LamE_algebra_on_Lam C terminal CC CP KanExt Lam_Initial) ⟧ → C, C ⟦ functor_composite (U Z) ` (LamE_algebra_on_Lam C terminal CC CP KanExt Lam_Initial), ` (LamE_algebra_on_Lam C terminal CC CP KanExt Lam_Initial) ⟧. Proof. apply fbracket_for_LamE_algebra_on_Lam. Defined.
Definition EVAL : ∏ (C : category) (terminal : Terminal C) (CC : BinCoproducts C) (CP : BinProducts C) (KanExt : ∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) (Lam_Initial : Initial (FunctorAlg (Id_H C CC (LamSignature.Lam_Sig C terminal CC CP)))) (LamE_Initial : Initial (FunctorAlg (Id_H C CC (LamE_Sig C terminal CC CP)))), hss_category CC (LamE_Sig C terminal CC CP) ⟦ InitialObject (LamEHSS_Initial C terminal CC CP KanExt LamE_Initial), LamE_model_on_Lam C terminal CC CP KanExt Lam_Initial ⟧. Proof. apply FLATTEN. Defined.