Library UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems_Summary
Interface file to the package SubstitutionSystems
The purpose of this file is to provide a stable interface to
the formalization of heterogeneous substitution systems as
defined by Matthes and Uustalu
version for simplified notion of HSS by Ralph Matthes (2022, 2023)
the file is very close to the homonymous file in the parent directory
basically, the changes in SimplifiedHSS.SubstitutionSystems are propagated
WARNING: the last part of the previous development is commented out since
SimplifiedHSS.Lam is an incomplete adaptation
Require Import UniMath.Foundations.PartD.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.Limits.BinProducts.
Require Import UniMath.CategoryTheory.Limits.BinCoproducts.
Require Import UniMath.CategoryTheory.Limits.Initial.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.FunctorAlgebras.
Require Import UniMath.CategoryTheory.opp_precat.
Require Import UniMath.CategoryTheory.yoneda.
Require Import UniMath.CategoryTheory.PointedFunctors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.HorizontalComposition.
Require Import UniMath.CategoryTheory.PointedFunctorsComposition.
Require Import UniMath.SubstitutionSystems.Signatures.
Require Import UniMath.SubstitutionSystems.BinSumOfSignatures.
Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems.
Require Import UniMath.SubstitutionSystems.GenMendlerIteration.
Require Import UniMath.CategoryTheory.RightKanExtension.
Require Import UniMath.SubstitutionSystems.GenMendlerIteration.
Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial.
Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems.
Require Import UniMath.SubstitutionSystems.LamSignature.
Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam.
Require Import UniMath.SubstitutionSystems.Notation.
Local Open Scope subsys.
Notation "⦃ f ⦄_{ Z }" := (fbracket _ Z f)(at level 0).
Notation "G • F" := (functor_composite F G).
Definition GenMendlerIteration :
∏ (C : category) (F : functor C C)
(μF_Initial : Initial (FunctorAlg F)) (C' : category)
(X : C') (L : functor C C'),
is_left_adjoint L
→ ∏ ψ : ψ_source C C' X L ⟹ ψ_target C F C' X L,
∃! h : C' ⟦ L ` (InitialObject μF_Initial), X ⟧,
# L (alg_map F (InitialObject μF_Initial)) · h =
ψ ` (InitialObject μF_Initial) h.
Show proof.
Arguments It {_ _} _ {_} _ _ _ _.
Lemma 9
Theorem fusion_law
: ∏ (C : category)
(F : functor C C)
(μF_Initial : Initial (category_FunctorAlg F))
(C' : category)
(X X' : C') (L : functor C C')
(is_left_adj_L : is_left_adjoint L)
(ψ : ψ_source C C' X L ⟹ ψ_target C F C' X L)
(L' : functor C C')
(is_left_adj_L' : is_left_adjoint L')
(ψ' : ψ_source C C' X' L' ⟹ ψ_target C F C' X' L')
(Φ : yoneda_objects C' X • functor_opp L
⟹
yoneda_objects C' X' • functor_opp L'),
let T:= (` (InitialObject μF_Initial)) in
ψ T · Φ (F T) = Φ T · ψ' T
→
Φ T (It μF_Initial X L is_left_adj_L ψ) =
It μF_Initial X' L' is_left_adj_L' ψ'.
Show proof.
Lemma fbracket_natural
: ∏ (C : category) (CP : BinCoproducts C)
(H : Presignature C C C) (T : hss CP H) (Z Z' : category_Ptd C)
(f : category_Ptd C ⟦ Z, Z' ⟧)
(g : [C,C] ⟦ U Z', `T ⟧),
(`T ∘ # U f : [C, C] ⟦ `T • U Z , `T • U Z' ⟧) · ⦃g⦄_{Z'} = ⦃#U f · g⦄_{Z} .
Show proof.
Lemma compute_fbracket
: ∏ (C : category) (CP : BinCoproducts C)
(H : Presignature C C C) (T : hss CP H) (Z : category_Ptd C)
(f : category_Ptd C ⟦ Z, ptd_from_alg T ⟧),
⦃#U f⦄_{Z} = (`T ∘ # U f : [C, C] ⟦ `T • U Z , `T • U _ ⟧) · ⦃ identity (U (ptd_from_alg T)) ⦄_{ptd_from_alg T}.
Show proof.
Definition Monad_from_hss
: ∏ (C : category) (CP : BinCoproducts C)
(H : Signature C C C), hss CP H → Monad C.
Show proof.
Theorem 25
Definition hss_to_monad_functor
: ∏ (C : category) (CP : BinCoproducts C)
(H : Signature C C C),
functor (hss_precategory CP H) (category_Monad C).
Show proof.
Lemma 26
Lemma faithful_hss_to_monad
: ∏ (C : category) (CP : BinCoproducts C)
(H : Signature C C C), faithful (hss_to_monad_functor C CP H).
Show proof.
Lifting initiality
- the operation itself
- its compatibility with variables
- its compatibility with signature-dependent constructions
Definition bracket_for_initial_algebra
: ∏ (C : category) (CP : BinCoproducts C),
(∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C)
→ ∏ (H : Presignature C C C)
(IA : Initial (FunctorAlg (Id_H C CP H)))
(Z : category_Ptd C),
[C, C] ⟦ U Z, U (ptd_from_alg (InitAlg C CP H IA)) ⟧
→
[C, C] ⟦ ℓ (U Z) ` (InitialObject IA), ` (InitAlg C CP H IA) ⟧.
Show proof.
Lemma bracket_Thm15_ok_η
: ∏ (C : category) (CP : BinCoproducts C)
(KanExt : ∏ Z : category_Ptd C,
GlobalRightKanExtensionExists C C (U Z) C)
(H : Presignature C C C)
(IA : Initial (FunctorAlg (Id_H C CP H)))
(Z : category_Ptd C)
(f : [C,C] ⟦ U Z, U (ptd_from_alg (InitAlg C CP H IA))⟧),
f =
# (pr1 (ℓ (U Z))) (η (InitAlg C CP H IA)) ·
bracket_Thm15 C CP KanExt H IA Z f.
Show proof.
Lemma bracket_Thm15_ok_τ
: ∏ (C : category) (CP : BinCoproducts C)
(KanExt : ∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C)
(H : Presignature C C C)
(IA : Initial (FunctorAlg (Id_H C CP H)))
(Z : category_Ptd C)
(f : [C,C] ⟦ U Z, U (ptd_from_alg (InitAlg C CP H IA)) ⟧),
(theta H) (` (InitAlg C CP H IA) ⊗ Z) ·
# H (bracket_Thm15 C CP KanExt H IA Z f) ·
τ (InitAlg C CP H IA)
=
# (pr1 (ℓ (U Z))) (τ (InitAlg C CP H IA)) ·
bracket_Thm15 C CP KanExt H IA Z f.
Show proof.
Theorem 29
Definition Initial_HSS :
∏ (C : category) (CP : BinCoproducts C),
(∏ Z : category_Ptd C,
GlobalRightKanExtensionExists C C (U Z) C)
→ ∏ H : Presignature C C C,
Initial (FunctorAlg (Id_H C CP H))
→ Initial (hss_category CP H).
Show proof.
Definition Sum_of_Signatures
: ∏ (C D D': category),
BinCoproducts D → Signature C D D' → Signature C D D' → Signature C D D'.
Show proof.
Definition 32
Definition Lam_Sig
: ∏ (C : category),
Terminal C → BinCoproducts C → BinProducts C → Signature C C C.
Show proof.
Definition 33