Library UniMath.SubstitutionSystems.STLC

Syntax of the simply typed lambda calculus as a multisorted signature.
Written by: Anders Mörtberg, 2017

Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Sets.

Require Import UniMath.MoreFoundations.Tactics.

Require Import UniMath.Combinatorics.Lists.

Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.Categories.HSET.Core.
Require Import UniMath.CategoryTheory.Categories.HSET.Colimits.
Require Import UniMath.CategoryTheory.Categories.HSET.Limits.
Require Import UniMath.CategoryTheory.Categories.HSET.Slice.
Require Import UniMath.CategoryTheory.Limits.Initial.
Require Import UniMath.CategoryTheory.Limits.BinProducts.
Require Import UniMath.CategoryTheory.Limits.BinCoproducts.
Require Import UniMath.CategoryTheory.Limits.Coproducts.
Require Import UniMath.CategoryTheory.FunctorAlgebras.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.slicecat.

Require Import UniMath.SubstitutionSystems.Signatures.
Require Import UniMath.SubstitutionSystems.LiftingInitial_alt.
Require Import UniMath.SubstitutionSystems.Notation.
Require UniMath.SubstitutionSystems.SubstitutionSystems.
Local Open Scope subsys.
Require Import UniMath.SubstitutionSystems.MonadsMultiSorted.
Require Import UniMath.SubstitutionSystems.MultiSortedBindingSig.
Require Import UniMath.SubstitutionSystems.MultiSorted.
Require Import UniMath.SubstitutionSystems.MultiSortedMonadConstruction.

Local Open Scope cat.

The simply typed lambda calculus from a multisorted binding signature

Section Lam.

Context (sort : hSet) (arr : sort sort sort).

A lot of notations, upstream?
The signature with strength for the simply typed lambda calculus
Extract the constructors of the stlc from the initial algebra
The variables
The source of the application constructor
The application constructor
The source of the lambda constructor
Definition lam_source (s t : sort) (X : HSET_over_sort2) : HSET_over_sort2 :=
  (sorted_option_functor sort s X proj_functor sort t) hat_functor sort (arr s t).

Definition lam_map (s t : sort) : HSET_over_sort2lam_source s t STLC,STLC :=
  (CoproductIn _ _ (Coproducts_functor_precat _ _ _ _ _) (ii2 (s,,t)))
    · SubstitutionSystems STLC_alg.

Definition make_STLC_Algebra X (fvar : HSET_over_sort21,X)
  (fapp : s t, HSET_over_sort2app_source s t X,X)
  (flam : s t, HSET_over_sort2lam_source s t X,X) :
    algebra_ob STLC_Functor.
Show proof.
apply (tpair _ X).
use (BinCoproductArrow _ fvar).
use CoproductArrow.
intro b; induction b as [st|st]; induction st as [s t].
- apply (fapp s t).
- apply (flam s t).

The recursor for the stlc
The equation for variables
Lemma foldr_var X (fvar : HSET_over_sort21,X)
  (fapp : s t, HSET_over_sort2app_source s t X,X)
  (flam : s t, HSET_over_sort2lam_source s t X,X) :
  var_map · foldr_map X fvar fapp flam = fvar.
Show proof.
assert (F := maponpaths (λ x, BinCoproductIn1 (BinCoproducts_functor_precat _ _ _ _ _) · x)
                        (algebra_mor_commutes _ _ _ (foldr_map X fvar fapp flam))).
rewrite assoc in F.
eapply pathscomp0; [apply F|].
rewrite assoc.
eapply pathscomp0; [eapply cancel_postcomposition, BinCoproductOfArrowsIn1|].
rewrite <- assoc.
eapply pathscomp0; [eapply maponpaths, BinCoproductIn1Commutes|].
apply id_left.


End Lam.